Using Algebra show that part of the line 3x + 4y = 0 is a diameter of the circle with equation (x^2) + (y^2) = 25

To show that the line is a diameter of the circle you muct show that it goes through the centre of the circle1) finding the centre of the circle. The general eqn is (x-a)2 + (y-b)2 = r2 , where r is the radius and (a, b) is the centre
to get x2 + y2 = 25 , centre must be the origin -> (x-0)2 + (y -0)2 = 25 x2 - 0x + 0 + y2 -0y + 0 = x2 + y2
2) then to prove it goes through line, sub (0, 0) into line equation 3x + 4y =0 -> (3x0) + (4x0) = 0
the line 3x + 4y = 0 goes through the centre of the circle and therefore must be a diameter

EL
Answered by Emma L. Maths tutor

7492 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations: 3x+2y=22, x=y-1


Solve the inequality 5x + 3 ≤ 3x − 6


ABC is a triangle with sides of length AB, 12m and BC,14m. Angle ACB = 43 degrees. Find the area of the triangle.


You are asked to choose from the meal deal at school, there are 9 varieties of sandwich, 6 varieties of snack and 8 varieties of drink. The meal deal consists of a sandwich, snack and drink - how many different combinations of meal deal are there?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences