Using Algebra show that part of the line 3x + 4y = 0 is a diameter of the circle with equation (x^2) + (y^2) = 25

To show that the line is a diameter of the circle you muct show that it goes through the centre of the circle1) finding the centre of the circle. The general eqn is (x-a)2 + (y-b)2 = r2 , where r is the radius and (a, b) is the centre
to get x2 + y2 = 25 , centre must be the origin -> (x-0)2 + (y -0)2 = 25 x2 - 0x + 0 + y2 -0y + 0 = x2 + y2
2) then to prove it goes through line, sub (0, 0) into line equation 3x + 4y =0 -> (3x0) + (4x0) = 0
the line 3x + 4y = 0 goes through the centre of the circle and therefore must be a diameter

EL
Answered by Emma L. Maths tutor

7777 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Write 2x^2 + 16x + 26 in the form a(x + d)^2 + e where a, d, and e are integers.


Fully simplify this equation; 3x^3 - x(3x+36) = 0


Square root of 81?


A rectangular path has perimeter of 240m. If the rectangle is split lengthways, two paths of 160m are formed. Work out the lengths of the sides of the original path.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning