A curve is defined for x > 0. The gradient of the curve at the point (x,y) is given by dy/dx = x^(3/2)-2x. Show that this curve has a minimum point and find it.

This is a typical exam style question, taken from an AQA paper. This question is testing your knowledge of stationary points and differentiation. Step 1: Find all stationary points by setting the first derivate to 0, and solving the equation. Step 2: Determine what type of stationary points those we found in step 1 are. This is done by obtaining the second derivative, and substituting in the x values found in step 1. (Optional step 3: interpretationFirst derivative - gradientSecond derivative - rate of change of gradient)

YC
Answered by Yishuang C. Maths tutor

4566 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is a Probability Mass Function (PMF)?


Differentiate (3x^2-5x)/(4x^3+2x^2)


Show that the volume of the solid formed by the curve y=cos(x/2), as it is rotated 360° around the x-axis between x= π/4 and x=3π/4, is of the form π^2/a. Find the constant a.


Differentiate y = lnx + 4x^2 + 3e^4x with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning