Differentiate f(x)=(x+sin(2x))^4

This is an actual question from an EdExcel C3 paper worth 4 marks. Ok so first thing we do is look at the function and try and determine which of our 3 differentiation rules we use. Is it a Product / Quotient / Composite function? Well it isn’t in the form y=f(x)g(x) nor the form y=f(x)/g(x) so it cannot be a product or quotient. As the function is written as y=f(x)^n we can use a method to differentiate a composite, ie, the chain rule! We recall that the chain rule to differentiate y=f(x)=g(x)^n is given as f’(x)=n (g(x)^n-1) * (g’(x)). So we look back and see our n=4. Before we whack it all in the formula we look at g(x)=x+sin(2x), and differentiate this, g’(x)=1+2cos(2x); now were home and dry. All that’s left is to stick everything into our formula and jobs done! So our answer is f’(x)=4(x+sin(2x))^3 * (1+2cos(2x)). Happy 4 marks!

UB
Answered by Udayan B. Maths tutor

4275 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the turning points of the curve y=2x^3 - 3x^2 - 14.


Find the two real roots of the equation x^4 - 5 = 4x^2 . Give the roots in an exact form. [4]


Intergrate 15x^2 + 7


Express 2 cos x – sin x in the form Rcos( x + a ), where R and a are constants, R > 0 and a is between 0 and 90 ° Give the exact value of R and give the value of to 2 decimal places.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning