How do you find the minimum of the equation sin^2(x) + 4sin(x)?

The first step to solving this problem is to treat it as a normal quadratic equation; if you are struggling with comparing our equation to a normal quadratic, try substituting sin(x) = y into the equation as shown:

sin2(x) + 4sin(x) becomes y+ 4y 

Even though our equation does not equal 0 we can still use the 'complete the square' method to help us find the minimum, after applying this method our equation becomes:

(y + 2)2 - 4

From this we can substitue y for sin(x), giving:

(sin(x) + 2)2 - 4 

To find the minimum of our equation we have to take in to account the fact that sin(x) has a range of -1 to 1, which limits (sin(x) + 2) to a range of 1 to 3. 

From this you should be able to deduct that the smallest value of (sin(x) + 2)- 4 is -3. This occurs when sin(x) = -1. 

(-1 + 2)- 4 = 1- 4 = -3

Hence the minimum of sin2(x) + 4sin(x) is -3. 

KS
Answered by Kirsten S. Maths tutor

4728 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Circle C has equation x^2 + y^2 - 6x + 4y = 12, what is the radius and centre of the circle


f(x) = x^3 + 3x^2 + 5. Find (a) f ′′(x), (b) ∫f(x)dx.


Express (3 - sqrt(5))^2 in the form m + n*sqrt(5), where m and n are integers.


A sweet is modelled as a sphere of radius 10mm and is sucked. After five minutes, the radius has decreased to 7mm. The rate of decrease of the radius is inversely proportional to the square of the radius. How long does it take for the sweet to dissolve?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences