Find an expression in terms of powers of cos(x) for cos(5x)

De Moivre's theorem states that eix= cos(x) + isin(x) or that ei5x= cos(5x)+ isin(5x). If the real components of both sides of this equation is taken we can see that : cos(5x) = Re[ei5x ] where Re means take the real component of
Also ei5x= eix*5 =(cos(x) + isin(x))5 using laws of index multiplication.
Therefore cos(5x) = Re[(cos(x) + isin(x))5 ]For easy of writing let us use notation c= cos(x) and s= sin(x). We can thus write cos(5x) =Re[(c+is)5]
Expanding the bracket using binomial theorem cos(5x) = c5-10c3s2+5cs4
Pythagoras's identity states sin2x + cos2x =1Rearranging we can write s2=1-c2
Substituting this expression for s2 we get cos(5x) = c5-10c3(1-c2)+5c(1-c2)2Expanding the brackets and gathering like powers of cos xwe get cos(5x)= 16c5-20c3+5cChanging back notation we can writecos(5x)= 16cos5(x)-20cos3(x)+5cos(x)

AA
Answered by Arnav A. Maths tutor

7120 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate 2sin(theta)cos(2*theta)


Integrate the function f(x) = 1/(4x-1)


At each point P of a curve for which x > 0 the tangent cuts the y-axis at T, and N is the foot of the perpendicular from P to the y-axis. If T is always 1 unit below N and the curve passes through the point (1,0), find the Cartesian equation of the curve.


What is the y-coordinate minimum point of y = 3x^2 + x - 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning