Find an expression in terms of powers of cos(x) for cos(5x)

De Moivre's theorem states that eix= cos(x) + isin(x) or that ei5x= cos(5x)+ isin(5x). If the real components of both sides of this equation is taken we can see that : cos(5x) = Re[ei5x ] where Re means take the real component of
Also ei5x= eix*5 =(cos(x) + isin(x))5 using laws of index multiplication.
Therefore cos(5x) = Re[(cos(x) + isin(x))5 ]For easy of writing let us use notation c= cos(x) and s= sin(x). We can thus write cos(5x) =Re[(c+is)5]
Expanding the bracket using binomial theorem cos(5x) = c5-10c3s2+5cs4
Pythagoras's identity states sin2x + cos2x =1Rearranging we can write s2=1-c2
Substituting this expression for s2 we get cos(5x) = c5-10c3(1-c2)+5c(1-c2)2Expanding the brackets and gathering like powers of cos xwe get cos(5x)= 16c5-20c3+5cChanging back notation we can writecos(5x)= 16cos5(x)-20cos3(x)+5cos(x)

AA
Answered by Arnav A. Maths tutor

7143 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation 5^(2x) - 12(5^x) + 35 = 0


The points A and B have coordinates (3, 4) and (7, 6) respectively. The straight line l passes through A and is perpendicular to AB. Find an equation for l, giving your answer in the form ax + by + c = 0, where a, b and c are integers.


Find all solutions to the equation 8sin^2(theta) - 4 = 0 in the interval 2(pi) < (theta) < 4(pi)


When Integrating by parts, how do you know which part to make "u" and "dv/dx"?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning