If a particle of mass m is launched vertically upwards from the ground with velocity u m/s, how long will it take to return to the ground in terms of m, u and g?

Taking upwards to be positive, and using the 'suvat' equation s=ut+1/2at2 we know that u=u, a=-g and s=0 when the particle returns to the ground. Then we solve for t:
0=ut-1/2gt20=t(u-1/2gt)
So the particle is at the ground at t=0 or t=2u/g. Since we know the particle starts at the ground (t=0) we must have that it takes 2u/g seconds to return to the ground

JV
Answered by Jackie V. Maths tutor

3337 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you sketch the graph of a function?


Find the equation of the tangent to the curve y = (2x -3)^3 at the point (1, - 1), giving your answer in the form y = mx + c.


The curve y = 4x^2 + a/x +5 has a stationary point. Find the value of the positive constant 'a' given that the y-coordinate of the stationary point is 32. (OCR C1 2016)


An ellipse has the equation (x^2)/4 + (y^2)/9 = 1. Find the equation of the tangent at (-6/5 , 12/5)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning