If a particle of mass m is launched vertically upwards from the ground with velocity u m/s, how long will it take to return to the ground in terms of m, u and g?

Taking upwards to be positive, and using the 'suvat' equation s=ut+1/2at2 we know that u=u, a=-g and s=0 when the particle returns to the ground. Then we solve for t:
0=ut-1/2gt20=t(u-1/2gt)
So the particle is at the ground at t=0 or t=2u/g. Since we know the particle starts at the ground (t=0) we must have that it takes 2u/g seconds to return to the ground

JV
Answered by Jackie V. Maths tutor

2985 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using Trigonometric Identities prove that [(tan^2x)(cosecx)]/sinx=sec^2x


Why does the product rule for differentiating functions work?


How do I expand a bracket to a negative power if it doesn't start with a 1.


How do i use chain rule to calculate the derivative dy/dx of a curve given by 2 "parametric equations": x=(t-1)^3, y=3t-8/t^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences