Complete the square and hence sketch the graph of f(x) = x^2 + 2x + 7

Consider (x + 1)^2, where we halved the coefficient of x to obtain 1. This gives us x^2 + 2x + 1, which looks similar to our function, except it differs by a constant value of 6, hence, by adding 6 to (x + 1)^2, we get f(x)= (x+1)^2 + 6, so we have completed the square. This format of f(x) makes the graph far easier to sketch, as now we know that (x+1)^2 >= 0 for every value of x, so the minimum value of f(x) is 6, where (x + 1)^2 = 0, which means that (-1,6) is the minimum point of f(x). Since the graph never crosses at y = 0, there are no solutions to f(x) = 0, so the only axis we need to consider the graph crossing is now the y-axis. Where x = 0, f(x) = (1)^2 + 6 = 7, so the graph has the 'usual' quadratic shape with y- intercept (0,7) and min point at (-1,6).

JP
Answered by Jordan P. Maths tutor

3829 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations: 2x + y = 18 and x - y = 6


Find the interserction points of: The circle, x^2+(y-1)^2=18 and the line, y=x+1.


Solve x/(x-7) + 6/(x+4) = 1


Alice will play 2 games of tennis against Bob. Alice’s chances of winning each game is 0.7. Work out the probability of Alice winning exactly one match.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning