Differentiate y=3x^2+2x+4 and find the stationary points, decide if it is a local maximum or minimum.

First Differentiate the equation to getdy/dx=6x+2Equal this to 0 to find the stationary pointdy/dx=0=6x+2 => 6x=-2=> x=-2/6=> x=-1/3
differentiate again to find the whether it is a maximum or minimumd2y/dx2=6Therefore as 6>0 we have that this point is a minimum.

JG
Answered by Jemma G. Maths tutor

4586 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Show that (x+1)(x+2)(x+3) can be written in the form ax^3 +bx^2 + cx + d where a,b,c,d are positive integers.


Solve the following simultaneous equations: x^2-y^2=9, x - y = 1


Solve 5(x-6) < 20


There are 9 counters in a bag. 7 of the counters are green. 2 of the counters are blue. Two counters are chosen at random, what is the probability one counter of each colour is chosen.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning