Use integration by parts to find the integral of ln x by taking ln x as the multiple of 1 and ln x

For integration by parts, the integral is uv - ∫ u' v dx. First we take u = ln x and v' = 1. While we could have u and v' be the opposite at this stage, it becomes apparent later on that we can't do this because we would still need to integrate ln x. Differentiating u gives u' = 1/x (this is a derivative that has to just be learnt) and integrating v' gives v = x. Therefore the integral is x ln x - ∫ x(1/x) dx = x ln x - ∫ dx. So the integral of ln x is x ln x - x.

JC
Answered by Jack C. Maths tutor

5181 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can you express the complex number z = 2 + 3i in the form z = r(cos x + i sinx)


Write 36% as a fraction in its simplest terms.


Differentiate y = x^3 + 2x^2 + 4x + 3


How do I find a stationary point on a curve and work out if it is a maximum or minimum point?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning