Use integration by parts to find the integral of ln x by taking ln x as the multiple of 1 and ln x

For integration by parts, the integral is uv - ∫ u' v dx. First we take u = ln x and v' = 1. While we could have u and v' be the opposite at this stage, it becomes apparent later on that we can't do this because we would still need to integrate ln x. Differentiating u gives u' = 1/x (this is a derivative that has to just be learnt) and integrating v' gives v = x. Therefore the integral is x ln x - ∫ x(1/x) dx = x ln x - ∫ dx. So the integral of ln x is x ln x - x.

JC
Answered by Jack C. Maths tutor

4578 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A 2.4 m long plank of mass 20kg has 2 pins, each 0.5 meters from each respective plank end. A person of mass 40kg stands on the plank 0.1m from one of the pins. Calculate the magnitude of reactions at the pins for this structure to be in equilibrium.


Express 9^(3x+1) in the form 3^y, giving "y" in the form "ax+b" where "a" and "b" are constants.


How do you integrate by parts?


A particle of weight 15N is resting on a plane inclined at an angle of 30°. Find : a) the normal force exerted on the particle, b) the coefficient of friction between the particle and the plane, providing it is in limiting equilibrium


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences