How do you know if the second derivative of an equation is a maximum or a minimum?

If the second derivative of an equation is positive (d2y /dx2 > 0), we can see that this point on a curve is a minimum. This is because, where the first derivative finds the gradient of a curve (how the slope changes with respect to a change in x), the second derivative finds how an increase in x of an incremental amount affects the change in the gradient. - if you imagine y=x2, for example, we know it looks like a U so has a minimum point - any increase in x from the minimum (move to the right) would lead to the gradient increasing, so is positive. (The first derivative of x2 is 2x, the second derivative is 2 (positive)).
Conversely it follows that if the second derivative is negative (d2y /dx2 < 0), the curve has a maximum because any increase in x of any tiny amount will lead to the gradient decreasing (getting more negative away from zero) - so the change in the gradient will be negative. For y = -x2 , which looks like an upside down U, the first derivative is -2x, and the second is -2 which shows there to be a maximum (which we know is true).

JG
Answered by Jessica G. Maths tutor

2940 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the first derivative of f(x) = tan(x).


A particle of mass m moves from rest a time t=0, under the action of a variable force f(t) = A*t*exp(-B*t), where A,B are positive constants. Find the speed of the particle for large t, expressing the answer in terms of m, A, and B.


Integrate lnx


What is the integral of x^2 sin(x) between the limits 0 and π/2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences