x^2 + y^2 + 10x + 2y - 4xy = 10. Find dy/dx in terms of x and y, fully simplifying your answer.

  • Google+ icon
  • LinkedIn icon

x2 + y2 + 10x + 2y - 4xy = 10

Start by differentiating both sides by x, the terms not containing y are differentiated normally, x2 becomes 2x, 10x becomes 10, and 10 becomes 0.
For the y2 term, by implicit differentiation the result is 2y (the same as with x) multiplied by a factor of dy/dx, or 2y(dy/dx).
For the 2y term, as above, the result is the same as for x, 2 in this case, multiplied by a factor of dy/dx. I.e. 2(dy/dx).
The -4xy term requires use of the product rule (d(uv)/dx = v(du/dx) + u(dv/dx)). In this case that gives d(-4xy)/dx = -4x(dy/dx) + y(-4). 
Our completely differentiated equation is now
2x + 2y(dy/dx) + 10 + 2(dy/dx) -4x(dy/dx) - 4y = 0
Grouping the dy/dx terms and taking the remaining terms to the other side gives
(2y + 2 - 4x)(dy/dx) = 4y - 10 - 2x
Dividing through by (2y + 2 - 4x) gives
(dy/dx) = (4y - 10 - 2x)/(2y + 2 - 4x)
Simplifying the fraction on the Right Hand Side gives
(dy/dx) = (2y - 5 - x)/(y + 1 - 2x)

Guy L. A Level Further Mathematics  tutor, A Level Maths tutor, A Lev...

About the author

is an online A Level Maths tutor who tutored with MyTutor studying at Bristol University

Still stuck? Get one-to-one help from a personally interviewed subject specialist.

95% of our customers rate us

Browse tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss