x^2 + y^2 + 10x + 2y - 4xy = 10. Find dy/dx in terms of x and y, fully simplifying your answer.

x2 + y2 + 10x + 2y - 4xy = 10

Start by differentiating both sides by x, the terms not containing y are differentiated normally, x2 becomes 2x, 10x becomes 10, and 10 becomes 0.
For the y2 term, by implicit differentiation the result is 2y (the same as with x) multiplied by a factor of dy/dx, or 2y(dy/dx).
For the 2y term, as above, the result is the same as for x, 2 in this case, multiplied by a factor of dy/dx. I.e. 2(dy/dx).
The -4xy term requires use of the product rule (d(uv)/dx = v(du/dx) + u(dv/dx)). In this case that gives d(-4xy)/dx = -4x(dy/dx) + y(-4). 
Our completely differentiated equation is now
2x + 2y(dy/dx) + 10 + 2(dy/dx) -4x(dy/dx) - 4y = 0
Grouping the dy/dx terms and taking the remaining terms to the other side gives
(2y + 2 - 4x)(dy/dx) = 4y - 10 - 2x
Dividing through by (2y + 2 - 4x) gives
(dy/dx) = (4y - 10 - 2x)/(2y + 2 - 4x)
Simplifying the fraction on the Right Hand Side gives
(dy/dx) = (2y - 5 - x)/(y + 1 - 2x)

GL
Answered by Guy L. Maths tutor

13430 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Lorem ipsum dolor sit amet


How do I find the root of a quadratic equation?


Integral of (cos(x))^2 or (sin(x))^2


When dealing with trigonometric functions such as sin, cos or tan, how do you solve the trigonometric equation when the argument of the function(s) is nx, where n is a real number not equal to 1.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences