x^2 + y^2 + 10x + 2y - 4xy = 10. Find dy/dx in terms of x and y, fully simplifying your answer.

x2 + y2 + 10x + 2y - 4xy = 10

Start by differentiating both sides by x, the terms not containing y are differentiated normally, x2 becomes 2x, 10x becomes 10, and 10 becomes 0.
For the y2 term, by implicit differentiation the result is 2y (the same as with x) multiplied by a factor of dy/dx, or 2y(dy/dx).
For the 2y term, as above, the result is the same as for x, 2 in this case, multiplied by a factor of dy/dx. I.e. 2(dy/dx).
The -4xy term requires use of the product rule (d(uv)/dx = v(du/dx) + u(dv/dx)). In this case that gives d(-4xy)/dx = -4x(dy/dx) + y(-4). 
Our completely differentiated equation is now
2x + 2y(dy/dx) + 10 + 2(dy/dx) -4x(dy/dx) - 4y = 0
Grouping the dy/dx terms and taking the remaining terms to the other side gives
(2y + 2 - 4x)(dy/dx) = 4y - 10 - 2x
Dividing through by (2y + 2 - 4x) gives
(dy/dx) = (4y - 10 - 2x)/(2y + 2 - 4x)
Simplifying the fraction on the Right Hand Side gives
(dy/dx) = (2y - 5 - x)/(y + 1 - 2x)

GL
Answered by Guy L. Maths tutor

14517 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the curve y=x^3-4x^2+2 at the point (3,-7)


Locate the position and the nature of any turning points in the function: 2x^3 - 9x^2 +12x


Why is 2 + 2 not equal to 12?


Why does a 'many to one' function not have an inverse?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning