Give the possible values of x when x^2 - 5x + 4 = 0

First, when faced with a question like this you must factorise the expression. So we need to factorise x2-5x+4 into 2 linear parts. (Linear terms are terms without any powers of x). To do this, we need to find 2 numbers that add together to make -5 and times together to give 4. The only numbers that have both of these properties are -4 and -1.So we have (x-4)(x-1)= x2-5x+4. To check this we can expand out the brackets.We now need to solve (x-4)(x-1)=0 to solve our original question. As we know, anything multiplied by 0 gives 0, therefore (x-4)=0 and (x-1)=0 are two solutions to the problem, therefore x=4 or x=1 by rearranging.

SD
Answered by Sam D. Maths tutor

4873 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

a.) simplify and expand (x+3)(2x+5) b.) differentiate (x+3)(2x+5) c.) where does this function intercept the x and y axis? d.) does this function have any turning points? if so where?


b is two thirds of c. 5a = 4c Work out the ratio a : b : c Give your answer in its simplest form where a, b and c are integers


Solve the following equation. (x)^2-8x+15=0


Factorise 4x+6x^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences