The curve, C has equation y = 2x^2 +5x +k. The minimum value of C is -3/4. Find the value of k.

Notes: At the minimum point of the curve, the gradient is = 0. You can find the gradient of a curve by taking the derivative of a point in the curve. We also know that when the curve is at a minimum, y =-3/4.With this is mind, you can solve the question by taking these steps:Step 1 : Differentiate the equation of the curve get 4x+5 , Step 2: To find where the curve is at a minimum, set the dy/dx = 0. so 4x+5=0 therefore, we find x= -5/4.Step 3: We know At the minimum points, x= -5/4 and y=-34 so we can substitute these into the equation of the curve to find the unknown variable k. k = 19/8

BH
Answered by Baraqat H. Maths tutor

14586 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

An arithmetic progression has a tenth term (a10) = 11.1 and a fiftieth term (a50) = 7.1 Find the first term (a) and the common difference (d). Also find the sum of the first fifty terms (Sn50) of the progression.


How to integrate by parts


Find the exact value of x from the equation 3^x * e^4x = e^7


Find the roots of this equation: y=(8-x)lnx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning