The curve, C has equation y = 2x^2 +5x +k. The minimum value of C is -3/4. Find the value of k.

Notes: At the minimum point of the curve, the gradient is = 0. You can find the gradient of a curve by taking the derivative of a point in the curve. We also know that when the curve is at a minimum, y =-3/4.With this is mind, you can solve the question by taking these steps:Step 1 : Differentiate the equation of the curve get 4x+5 , Step 2: To find where the curve is at a minimum, set the dy/dx = 0. so 4x+5=0 therefore, we find x= -5/4.Step 3: We know At the minimum points, x= -5/4 and y=-34 so we can substitute these into the equation of the curve to find the unknown variable k. k = 19/8

BH
Answered by Baraqat H. Maths tutor

14328 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate (x+2)/((x+5)(x-7)) using partial fractions between the limits 5 and -2, giving your answer to 3sf


Curve C has equation 4x^2- y^3 - 4xy +2^y = 0 , point P (-2, 4) lies on C, find dy/dx at the point P


Solve the complex equation z^3 + 32 + 32i(sqrt(3)) = 0


Sketch y = 9x – 4x^3, showing where the curve crosses the x axis.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning