Solve the differential equation dy/dx = 6xy^2 given that y=1 when x=2.

This equation can be solved using separation of variables. Firstly we rearrange the equation so that all of the y's are on the left hand side and all of the x's are on the right: 1/y2* dy = 6x * dx. Then we integrate both sides to get the following equation: -1/y = 3x2+C. To find the value of C, we plug y=1 and x=2 into the equation and solve it: -1/1 = 3*22+C => C = -13.If we rearrange the equation for y then the final answer is y=1/(13-3x2).

WS
Answered by Will S. Maths tutor

6573 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Exponential Growth Equations


Find the area under the curve of y=1/(3x-2)^0.5 between the limits x=1 and x=2 and the line y=0


How would you find the coordinates of the intersections of a graph with the x and y axes, and the coordinates of any turning points?


The equation 5x sqaured + px + q , where p and q are constants, has roots α and α + 4. (a) Show that p squared = 20q +400.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning