Solve the differential equation dy/dx = 6xy^2 given that y=1 when x=2.

This equation can be solved using separation of variables. Firstly we rearrange the equation so that all of the y's are on the left hand side and all of the x's are on the right: 1/y2* dy = 6x * dx. Then we integrate both sides to get the following equation: -1/y = 3x2+C. To find the value of C, we plug y=1 and x=2 into the equation and solve it: -1/1 = 3*22+C => C = -13.If we rearrange the equation for y then the final answer is y=1/(13-3x2).

WS
Answered by Will S. Maths tutor

7140 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

simplify (3x^2 - x - 2) / (x^2 - 1)


How would you find the minimum turning point of the function y = x^3 + 2x^2 - 4x + 10


given y = x^2 - 7x + 5, find dy/dx from first principles


How do you show that (x+2) is a factor of f(x) = x^3 - 19x - 30, and then factorise f(x) completely?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning