Find dy/dx where y= x^3(sin(x))

To differentiate y, we must used the product rule.The product rule is d/dx [f(x)g(x)] = f'(x)g(x) + g'(x)f(x)So here, we let f(x)= x^3 and g(x)= sin(x)Then, f'(x)= 3x^2 and g'(x) = cos(x)Then substituting these into the product rule formula, we get dy/dx = (3x^2)sin(x) + cos(x)x^3We can simplify the answer by factorising out x^2 :dy/dx= x^2[3sin(x) + xcos(x)]

KC
Answered by Kajal C. Maths tutor

8564 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

a) Solve the following equation by completing the square: x^(2)+ 6x + 1= 0. b) Solve the following equation by factorisation: x^(2) - 4x - 5 = 0 c) Solve the following quadratic inequality: x^(2) - 4x - 5 < 0 (hint use your answer to part b)


Solve the equation; 4 cos^2 (x) + 7 sin (x) – 7 = 0, giving all answers between 0° and 360°.


Using the substitution x = 2cosu, find the integral of dx/((x^2)(4-x^2)^1/2), evaluated between x=1 and x=sqrt(2).


Let f(x) = 2x^3 + x^2 - 5x + c. Given that f(1) = 0 find the values of c.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning