Given the equation 0=5x^2+3xy-y^3 find the value of dy/dx at the point (-2,2)

To answer this we will use implicit differentiation with respect to x. So start by differentiating each term. On the left hand side 0 differentiates to 0. On the right hand side 5x2 differentiates to 10x. By using the product rule and implicit differentiation 3xy differentiates to 3x dy/dx +3y. -y3 differentiates to -3y2 dy/dx by implicit differentiation. So the whole differentiated equation is 0=10x+3x dy/dx +3y - 3y2 dy/dx. Then rearrange the equation so all terms containing dy/dx are on one-side of the equals sign and the other terms are on the other-side so 3y2 dy/dx -3x dy/dx = 10x+3y. Then take out a factor of dy/dx from the left hand side giving dy/dx(3y2-3x)=10x+3y. Finally, divide each side by 3y2-3x to get an equation in terms of dy/dx, dy/dx=(10x+3y)/(3y2-3x). Then plug in the co-ordinates given above to obtain dy/dx=-7/9

HW
Answered by Holly W. Maths tutor

3324 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is integration?


How do I find the solution of the simultaneous equations x+3y=7 and 5x+2y=8


A curve C has equation y = (2 - x)(1 + x) + 3 . A line passes through the point (2, 3) and the point on C with x-coordinate 2 + h . Find the gradient of the line, giving your answer in its simplest form.


Express (16x+78)/(2x^2+25x+63) as two fractions


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences