How do you find stationary points of an equation, eg. y=x^2+3x+2

Stationary points of an equation are found where the gradient of the tangent at this point equals zero. A diagram can illustrate this. To find them differentiate the given equation (which gives the gradient) and set this to zero. eg. dy/dx = 2x+32x+3=0x=-3/2Plug this back into the equation of the line to find the y valuey=(-3/2)^2 + 3(-3/2) +2y= -1/4Stationary point is (-3/2, -1/4)To find the nature of this stationary point, find the second derivative, plug in your x value. If the value of the second derivative if positive, the point is a minimum, negative means a maximum.

EC
Answered by Ellie C. Maths tutor

3504 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation x^2 – 3xy – 4y^2 + 64 = 0; find dy/dx in terms of x and y, and thus find the coordinates of the points on C where dy/dx = 0


Prove algebraically that n^3+3n^2+2n+1 is odd for all integers n


Express 4x/(x^2-9) - 2/(x+3) as a single fraction in its simplest form.


Find the equation of the tangent to curve y=5x^2-2x+3 at the point x=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning