How do you find stationary points of an equation, eg. y=x^2+3x+2

Stationary points of an equation are found where the gradient of the tangent at this point equals zero. A diagram can illustrate this. To find them differentiate the given equation (which gives the gradient) and set this to zero. eg. dy/dx = 2x+32x+3=0x=-3/2Plug this back into the equation of the line to find the y valuey=(-3/2)^2 + 3(-3/2) +2y= -1/4Stationary point is (-3/2, -1/4)To find the nature of this stationary point, find the second derivative, plug in your x value. If the value of the second derivative if positive, the point is a minimum, negative means a maximum.

EC
Answered by Ellie C. Maths tutor

3312 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove the identity: (cos θ + sin θ)/(cosθ-sinθ) ≡ sec 2θ + tan 2θ


Why is the derivative of inverse tan(x) 1/(1+x^2)?


How would I go about solving 3(x-2) = x+7?


(4-2x)/(2x+1)(x+1)(x+3) = A/(2x+1)+B/(x+1)+C(x+3) Find the values of the constants A, B and C


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning