differentiate with respect to x. i). x^(1/2) ln (3x),

From this we can see that equation has 2 parts therefore we should look to using the product rule which is used to differiantiate a two functions multiplied together so (fg)'=f'g+fg'. In this question the differential of x^(1/2) is simply 1/2x^1/2 which can be rearranged using indices rules to 1/2x^1/2. Differentiating ln(3x) requires product rule in its own respect one can denote (3x) as U the ln(U) would simply be 1/U using ln then differential of u is 3. Therefore the differential on ln(3x) is 1/x simplified.
Overall the answer should ln(3x)/2x^(1/2) + 1/x^(1/2)

JD
Answered by Jesse D. Maths tutor

6478 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find an angle in a right-angled triangle when you are given two of its side's lengths?


A circle C with centre at the point (2, –1) passes through the point A at (4, –5). Find an equation for the circle C.


Find the coordinates of the points where the lines y=x^2-5x+6 and y=x-4 intersect.


Show that the integral ∫(1-2 sin^2⁡x)/(1+2sinxcosx) dx = (1/2) ln2 between the limits π/4 and 0. [5 marks]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences