Show that (x + 1)(x + 2)(x + 3) can be written in the form ax3 + bx2 + cx + d where a, b, c and d are positive integers.

(x+1)(x+2) = ( x^2 + 3x + 2) - multiplying out the first 2 terms(x^2 + 3x + 2)(x + 3) = x^3 + 3x^2 + 2x + 3x^2 + 9x + 6 - multiplying the product of the first two terms by the last termx^3 + 6x^2 + 11x + 6 - collecting like terms
a = 1b = 6c=11d=6

RK
Answered by Rachel K. Maths tutor

6187 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the value of 9^(-1/2)


There are 200 students in Year 10 110 are boys. There are 250 students in Year 11 140 are boys. Which year has the greater proportion of boys? (Taken from Nov 2014 AQA Unit 2)


A right-angled triangle has two smaller sides of length 5cm and 12cm. What is the length of the hypotenuse?


Factorise the following equation: y = 2x^2 + 4x - 6


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences