Show that (x + 1)(x + 2)(x + 3) can be written in the form ax3 + bx2 + cx + d where a, b, c and d are positive integers.

(x+1)(x+2) = ( x^2 + 3x + 2) - multiplying out the first 2 terms(x^2 + 3x + 2)(x + 3) = x^3 + 3x^2 + 2x + 3x^2 + 9x + 6 - multiplying the product of the first two terms by the last termx^3 + 6x^2 + 11x + 6 - collecting like terms
a = 1b = 6c=11d=6

RK
Answered by Rachel K. Maths tutor

6477 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Calculate (7 + √3)(7 - √3)


Richard wants to find out how often people buy crisps, a) name two things that are wrong with his survey question and b) create a better one


Factorise h^2 - 36.


Rectangle A has a length of 3y cm and a width of 2x cm. Rectangle B has a length of (y + 4)cm and a width of (x + 6)cm. Rectangle A has a perimeter of 94cm and Rectangle B has a perimeter of 56cm. Solve x and y and calculate the areas of each rectangle.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning