Show that (x + 1)(x + 2)(x + 3) can be written in the form ax3 + bx2 + cx + d where a, b, c and d are positive integers.

(x+1)(x+2) = ( x^2 + 3x + 2) - multiplying out the first 2 terms(x^2 + 3x + 2)(x + 3) = x^3 + 3x^2 + 2x + 3x^2 + 9x + 6 - multiplying the product of the first two terms by the last termx^3 + 6x^2 + 11x + 6 - collecting like terms
a = 1b = 6c=11d=6

RK
Answered by Rachel K. Maths tutor

6634 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

In a school, there is a total of 640 children. The ratio of Girls to boys is 7:9. How many boys are there in this school?


Solve the Simultaneous equation: 4x+y=25, x-3y=13


Find the volume of a cone with radius 13cm and with a perpendicular height of 9cm.


Simplify the following expression: √48+√(16 3/9) Give your answer in the form: (a√3)/b where a and b are integers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning