Solve these simultaneously to find values for a and b: 6a + b = 16 and 5a - 2b = 19

In order to tackle questions like this with two letters of unknown value, first what we try to do is eliminate one of the variables completely from an equation. If we call 6a + b = 16 eqn 1 and 5a - 2b = 19 eqn 2, we can see that if we multiply both sides of eqn 1 by 2, and add eqn 2 to the new equation we get, we can get rid of the 'b' term, making the equation in terms of 'a' only. Doing this gives us the following: (12a +2b = 32) + (5a -2b = 19), which goes on to give 17a = 51, meaning a = 3. Substituting this value for 'a' back into one of the original equations will give us the answer for 'b'. Putting a = 3 into eqn 1 gives: (6 x 3) + b = 16, which goes on to give 18 + b = 16, meaning b = -2.

MP
Answered by Malvika P. Maths tutor

4767 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

(This was taken from a GCSE past paper)A bag of 24 spoons costs £19.95. A box of 18 forks costs £15.55. Bags and boxes cannot be split. Gregor decides to buy the same number of spoons as forks. He places an order to buy the smallest number of each


(6x+4)/(2x- 2) + 3 = 4 solve for x


Make r the subject of the formula x = (3r - 4)/5


Solve 5x - 7 = 3x + 2, to find the value of x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning