How to solve a quadratic equation?

 How to solve a quadratic equation?
While learning mathematics, you will often meet quadratic equations. These equations serve a mathematical way to say that a certain equation, which may resemble a real-life problem, may have more than one solution.
Identifying quadratics
The general formula of the quadratic is ax2 + bx + c = 0, but it is very rare that a quadratic equations appears in its very bare form. In exams, they often like to hide it in certain ways, for example:
·      5*cos2(x) + 3 = 2 *cos(x), where you can introduce a new variable y, and solve for y. Remember that you still need to solve for y = cos(x) after that.
·      Or basically they can use any trigonometric function or logarithm to hide a quadratic.
·      Often, a higher degree equation can be simplified to a quadratic, for example x6 + 3x3 + 2 = 0, where you can introduce a new variable, just like in the previous example.
Methods to solve a quadratic
The general formula for solving the quadratic is x = (-B + or – SQRT(B2 – 4AC))/2A
Where A, B,C are the coefficients of the equations. If you don’t know what a coefficient is, it is basically the number before the unknowns in the equation. Often you see can see that e.g. x2 doesn’t have a number before it, but that simply means that its coefficient is 1.
Also, you can use the Vieta-formulas to solve a quadratic, which are relationships between the coefficients of the equation and its roots (solutions).
-B/A = the two roots added together
C/A = the two roots multiplied together
I recommend that you get comfortable with these relationships, because these Vieta-formulas in some way remain true at higher degree equations.
Another method to solve a quadratic is, completing the square, for example x2 + 2x + 1 = (x+1)2, so we can know that -1 is the only solution to our quadratic equation.

BH
Answered by Bence H. Maths tutor

5607 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(5 + 2(2^0.5))(7 - 3(2^0.5))


The region below the curve y = e^x + e^(-x) and the lines x = 0, x = ln4 is rotated 2π radians about the x-axis. Find the volume of the resulting solid.


A circle has eqn x^2 + y^2 + 2x - 6y - 40 = 0. Rewrite in the form (x-a)^2 + (y-b)^2 = d.


Using logarithms solve 8^(2x+1) = 24 (to 3dp)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning