The equation (k+3)x^2 + 6x + k =5 has two distinct real solutions for x. Prove that k^2-2k-24<0

We argue using the discriminant of a quadratic polynomial. For a quadratic ax^2 + bx + c=0, the discriminant D is D = b^2 - 4ac. When this quadratic has two distinct real roots, we have that D > 0. So we proceed by putting "0" on one side of the equation and plugging in the values from our expression. Here in our case, a = (k+3), b= 6, c=(k-5). (Notice c is not equal to k, since we need to have 0 on one side of the equation and so subtract 5 from both sides first).62-4(k+3)(k-5)>0Squaring 6 and multiplying out the brackets we get:36-4(k2+3k-5k-15)>0Collecting terms we get:36-4(k2-2k-15)>0Now we can divide everything by 4 to get:9-(k2-2k-15)>0Putting everything over to the other side we get:k2-2k-24>0And we are done.

HD
Answered by Huw D. Maths tutor

15321 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the general solution of the equation tan(2x + pi/2) = SQRT(3), giving your answer for x in terms of π in a simplified form.


A circle has eqn x^2 + y^2 + 2x - 6y - 40 = 0. Rewrite in the form (x-a)^2 + (y-b)^2 = d.


Express 2cos(x) + 5sin(x) in the form Rsin(x + a) where 0<a<90


Which A-level modules did you take?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning