The equation (k+3)x^2 + 6x + k =5 has two distinct real solutions for x. Prove that k^2-2k-24<0

We argue using the discriminant of a quadratic polynomial. For a quadratic ax^2 + bx + c=0, the discriminant D is D = b^2 - 4ac. When this quadratic has two distinct real roots, we have that D > 0. So we proceed by putting "0" on one side of the equation and plugging in the values from our expression. Here in our case, a = (k+3), b= 6, c=(k-5). (Notice c is not equal to k, since we need to have 0 on one side of the equation and so subtract 5 from both sides first).62-4(k+3)(k-5)>0Squaring 6 and multiplying out the brackets we get:36-4(k2+3k-5k-15)>0Collecting terms we get:36-4(k2-2k-15)>0Now we can divide everything by 4 to get:9-(k2-2k-15)>0Putting everything over to the other side we get:k2-2k-24>0And we are done.

HD
Answered by Huw D. Maths tutor

14969 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y = 4exp(6x) + cos(x) + 6x


How would I differentiate y = 3xy + 2x^2 + x^2y^2 ?


A block of mass 5kg is at rest on a smooth horizontal table, and connected to blocks of 3kg and 4kg which are hanging by strings via pulleys on either end of the table. Find the acceleration of the system and the tension in each string.


Find the general solution to the differential equation dy/dx = y/(x+1)(x+2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning