Determine the stationary points of y=(5x^2)/(lnx)

Differentiate y with respect to x using quotient rule:y'=[(1/x)(5x^2)-(10x)(lnx)]/(lnx)^2 =[5x-10xlnx]/(lnx)^2Stationary points occur when y'=0, so when y'=0 we have:5x-10xlnx = 0x(5-10lnx)=0So x=0 or 5-10lnx=0But when x=0, lnx is undefined, so there is no y value at x=0. So x cannot equal 0.Therefore: 5-10lnx=0 x=e^0.5Substitute back into y, we obtain:y=5e/0.5 = 10eSo Sationary Point is: (e^0.5, 10e)

JL
Answered by Jimmy L. Maths tutor

3611 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y = x^3 +x^2 - 4x +5 with respects to x.


Given that f(x) = (x^2 + 3)(5 - x), find f'(x).


Integrate Cos^2(x)


Express (5x + 4)/(x +2)(x - 1) in partial fractions.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning