Integrate 3t^2 + 7t with respect to t, between 1 and three.

To integrate you add one to the power and divide by the new power, so this becomes:3t3/3 + 7t2/2 simplifying to t3 + 7/2 t2If we were just performing indefinite integration you would need to remember the "+c" constant term. However since we are doing definite integration, this involves subtracting two solutions from each other and so the "+c" terms cancell and so can be ignored. [ t3 + 7/2 t2]31 = ((3)3+7/2 (3)2)-((1)3+7/2 (1)2) = 58.5-4.5= 54

JM
Answered by Josh M. Maths tutor

3174 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y=(5x^4)cos(2x)


Differentiate y = 7(x)^2 + cos(x)sin(x)


Solve the equation 5^x = 8, giving your answer to 3 significant figures.


Differentiate ln(x^3 +2) with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences