Integrate xsin(2x) by dx between the limits 0 and pi/2.

First it is important to identify that this is an integration by parts question as it can't be solved by substitution.
Let I = integral for ease of notation.Write out integration by parts formula I(u)dv= uv -I(v)du. You therefore need to select v and u so that you can integrate by du later on in your analysis.
In this case if we select u = x; du = dx. And if we select dv = sin2x; v = -cos(2x)/2.Then write in form as above I(u)dv = -(xcos(2x))/2 + I(cos(2x) /2 ) dx = -(xcos(2x))/2 +sin(2x)/4
Then sub in the limits to this expression to arrive at an answer of pi/4.

BA
Answered by Benedict A. Maths tutor

6994 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate y=(x^2)cos(x) with respect to x.


The line AB has equation 5x + 3y + 3 = 0. The point with coordinates (2k + 3, 4 -3k) lies on the line AB. How do you find the value of k.


How do I do this question: A small stone is projected vertically upwards from the point A with speed 11.2 m/s. Find the maximum height above A reached by the stone.


Express (3 - sqrt(5))^2 in the form m + n*sqrt(5), where m and n are integers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences