Integrate xsin(2x) by dx between the limits 0 and pi/2.

First it is important to identify that this is an integration by parts question as it can't be solved by substitution.
Let I = integral for ease of notation.Write out integration by parts formula I(u)dv= uv -I(v)du. You therefore need to select v and u so that you can integrate by du later on in your analysis.
In this case if we select u = x; du = dx. And if we select dv = sin2x; v = -cos(2x)/2.Then write in form as above I(u)dv = -(xcos(2x))/2 + I(cos(2x) /2 ) dx = -(xcos(2x))/2 +sin(2x)/4
Then sub in the limits to this expression to arrive at an answer of pi/4.

BA
Answered by Benedict A. Maths tutor

7500 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I use product rule when differentiating?


Let y = 4t/(t^2 + 5). Find dy/dt, writing your answer in it's simplest form, and find all values of t for which dy/dt = 0


y = Sin(2x)Cos(x). Find dy/dx.


What is the integral of (6x^2 + 2/x^2 + 5) with respect to x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning