Can you show me why the integral of 1/x is the natural log of x?

We can break this down into steps, going deeper each time. First we might just say: well, since integration is fundamentally the inverse process of differentiation and we know that the derivative of ln(x) is 1/x, then the integral of 1/x must be ln(x).
But hold on... how do we know that d/dx(ln x) = 1/x? Well, looking at ln(x), we cannot differentiate it directly but we do know that its inverse is e^x. Imagining a plot of the function ln(x), we know that inverting it is equivalent to switching round the axes or reflecting in y = x. From this, it is easy to see graphically that the derivative of the inverse function is the inverse of the derivative of the function. So if y = ln(x) : d/dx(ln x) = 1/ d/dy(e^y). However, the derivative of e^y is e^y from the definition of the exponential function and so this simplifies to: d/dx(ln x) = 1/ e^y = 1/x, showing that the integral of 1/x is ln(x).

JL
Answered by James L. Maths tutor

8294 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate 1/u(u-1)^2 between 4 and 2


How do you differentiate (3x+cos(x))(2+4sin(3x))?


Let y be a function of x such that y=x^3 + (3/2)x^2-6x and y = f(x) . Find the coordinates of the stationary points .


How do you find the gradient of a parametric equation at a certain point?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning