Why does the constant disappear when differentiating a function?

We can think of the constant term in a function in terms of x, for example in x^2 + 3x + 2 as 2 being multiplied by x^0. Anything to the power of 0 is equal to one, so in our example we would have 2 * x^ 0 which is the same as 2 * 1 which is 2, but this trick allows every term to have x of a certain power. Differentiating first multiplies the power of the x term with the coefficient, then takes one away from the power- with the constant term, multiplying the coefficient, the 2, by 0, will cause the whole term to disappear before we get to the second step.

AP
Answered by Abdullah P. Maths tutor

10215 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Please Simplify: (2x^2+3x/(2x+3)(x-2))-(6/x^2-x-2))


differentiate the following to find the equation for the gradient of the curve in terms of x and y: 3x^3 + 4x^2 + 5xy + 7y = 0


You are given the equation of the line y=x^3+x^2-2x. Find the stationary points of the curve and determine the maximum and minimum points and find where it crosses the x-axis and thus sketch the graph


y=x^2, find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences