Find the coordinates of the turning points of the curve y = 4/3 x^3 + 3x^2-4x+1

First differentiating by the rule that xn differentiates to nxn-1 we have that dy/dx = 4x2+6x-4.
At the turning points of a curve the differential is equal to 0 so we set 0=dy/dx = 4x2+6x-4, by factorising we can see that 0= 2(2x2+3x-2) = 2(2x-1)(x+2), so our turning points are at x=1/2 and x=-2 as this is when dy/dx =0.
to find the coordinates for these points we plug the x values into the original equation y=4/3 x3+3x2-4x+1 and we find that the turning points are (1/2, -1/12) and (-2, 31/3).

TE
Answered by Theo E. Maths tutor

8643 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use the substitution u=cos(2x)to find ∫(cos(2x))^2 (sin(2x))^3dx


John wants to separate a rectangular part of his garden for his puppy. He has material for a 100-meter long fence and he plans to use one side of his house as a barrier. How should John select the sizes of his fence in order to gain the biggest territory?


The point P lies on the curve C: y=f(x) where f(x)=x^3-2x^2+6x-12 and has x coordinate 1. Find the equation of the line normal to C which passes through P.


How do you find the possible values of cos(x) from 5cos^2(x) - cos(x) = sin^2(x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences