Supposing y = arcsin(x), find dy/dx

Suppose:
y = arcsin(x)
Then, x = sin(y)
And, dx/dy = cos(y) ----- (1)
Using: dy/dx = 1/(dx/dy);
Thus 1 becomes: dy/dx = 1/cos(y) ------ (2)
Using: sin^2(y) + cos^2(y) = 1;
We can rearrange 2 to: dy/dx = 1/sqrt(1 - sin^2(y))
Therefore dy/dx = 1/(sqrt(1 - x^2)

JN
Answered by James N. Maths tutor

6962 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

When is an arrangement a combination, and when a permutation?


Find the integral of ((2(7x^(2)-xe^(-2x))-5)/x) . Given that y=27 at x=1, solve the differential equation dy/dx=((2(7x^(2)-xe^(-2x))-5)/-3x).y^(2/3) in terms of y.


show that tan(x)/sec2(x) = (1/2)sin(2x)


Solve the equation; 4 cos^2 (x) + 7 sin (x) – 7 = 0, giving all answers between 0° and 360°.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning