Supposing y = arcsin(x), find dy/dx

Suppose:
y = arcsin(x)
Then, x = sin(y)
And, dx/dy = cos(y) ----- (1)
Using: dy/dx = 1/(dx/dy);
Thus 1 becomes: dy/dx = 1/cos(y) ------ (2)
Using: sin^2(y) + cos^2(y) = 1;
We can rearrange 2 to: dy/dx = 1/sqrt(1 - sin^2(y))
Therefore dy/dx = 1/(sqrt(1 - x^2)

JN
Answered by James N. Maths tutor

6214 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I use numerical methods to find the root of the equation F(x) = 0?


Express (5x + 3)/((2x - 3)(x + 2)) in partial fractions.


Find the tangent to the curve y = x^2 + 3x + 2 at x = 1


What is the chain rule and how does it work?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences