Integrate the function f(x) = 1/(4x-1)

t Using the fact that d/dx ( ln g(x)) = g'(x)/g(x), we can see that the integral of this function will be an ln function. From observing f(x) we see that if the answer was ln(4x-1) then f(x) would need to be 4/(4x-1). This is four times bigger than what we want. To obtain the correct integral, we simply multiply ln(4x-1) by 1/4 to get rid of the 4 in the numerator, and so we arrive at the final answer of 1/4 ln(4x-1)

SV
Answered by Sachin V. Maths tutor

8946 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you integrate e^x cos x


Given f(x)=2x^3 - 2x^2 + 8x, find f'(x) and f"(x).


Given that log_{x} (7y+1) - log_{x} (2y) =1 x>4, 0<y<1 , express y in terms of x.


A curve C has equation: y = x^2 − 2x − 24x^1/2, x > 0; Find (i) dy/dx (ii) d^2y/dx^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning