Integrate the function f(x) = 1/(4x-1)

t Using the fact that d/dx ( ln g(x)) = g'(x)/g(x), we can see that the integral of this function will be an ln function. From observing f(x) we see that if the answer was ln(4x-1) then f(x) would need to be 4/(4x-1). This is four times bigger than what we want. To obtain the correct integral, we simply multiply ln(4x-1) by 1/4 to get rid of the 4 in the numerator, and so we arrive at the final answer of 1/4 ln(4x-1)

SV
Answered by Sachin V. Maths tutor

8428 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve is defined by the parametric equations x=t^2/2 +1 and y=4/t -1. Find the gradient of the curve at t=2 and an equation for the curve in terms of just x and y.


The function f is defined for all real values of x as f(x) = c + 8x - x^2, where c is a constant. Given that the range of f is f(x) <= 19, find the value of c. Given instead that ff(2) = 8, find the possible values of c.


Consider the functions f(x) = −x^3 + 2x^2 + 3x and g(x) = −x^3 + 3x^2 − x + 3. (a) Find df/dx (x) and hence show that f(x) has turning points at when x = 2 /3 ± √ 13/ 3 . [5] (b) Find the points where f(x) and g(x) intersect. [4]


Differentiate y=e^(x)*sin(x) with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning