Integrate the function f(x) = 1/(4x-1)

t Using the fact that d/dx ( ln g(x)) = g'(x)/g(x), we can see that the integral of this function will be an ln function. From observing f(x) we see that if the answer was ln(4x-1) then f(x) would need to be 4/(4x-1). This is four times bigger than what we want. To obtain the correct integral, we simply multiply ln(4x-1) by 1/4 to get rid of the 4 in the numerator, and so we arrive at the final answer of 1/4 ln(4x-1)

SV
Answered by Sachin V. Maths tutor

8962 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation 7^(x+1) = 3^(x+2)


Given y = 2x(x^2 – 1)^5, show that dy/dx = g(x)(x^2 – 1)^4 where g(x) is a function to be determined.


Starting from the fact that acceleration is the differential of velocity (dv/dt = a) derive the SUVAT equations.


What is the definite integral of 2x^2 + 4x + 1 with a lower limit of 3 and a higher limit of 6?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning