Solve the simultaneous equations: 3x + 2y = 4 and 4x + 5y = 17

Step 1: multiply one or both equations so that the 2 equations have the same coefficient for either x or y (pick easier one) 5(3x + 2y) = 5(4) --> 15x + 10y = 20 AND 2(4x + 5y) = 2(17) --> 8x + 10y = 34 | Step 2: subtract one equation from the other 15x + 10y = 20 MINUS 8x + 10y = 34 --> (15x + 10y) - (8x + 10y) = 20 - 34 --> 7x = -14 | Step 3: solve the new equation 7x = -14 --> x = -2 | Step 4: substitute x = -2 into either one of our very first equations and solve to find y 3(-2) + 2y = 4 --> -6 + 2y = 4 --> 2y = 10 --> y = 5 | Step 5: check that our values for x and y are correct by substituting our values into the other initial equation

RD
Answered by Rania D. Maths tutor

5105 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations: 3x + y = -9, x^2 + 2x - 3 = y


How do you work out compound interest?


How to do add or subtraction fractions?


A straight line passes through the point (0, 6) and is perpendicular to y = 4x - 5. Find the equation of this line, giving your answer in the form y = mx + c .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning