f(x) = x^3 - 13x^2 + 55x - 75 , find the gradient of the tangent at x=3

f(x) = yy= x3 - 13x2 + 55x - 751) find f'(x) [=dy/dx] Differentiation is (1) multiplying the coefficient by the original power --> 2) reducing the original power by 1dy/dx = 3x2 - 26x + 55
2) find f'(3).f'(3) = 3(3)2 - 26(3) + 55f'(3) = 27 - 78 +55f'(3) = 4Tangent ~ y= [4]x +c

KO
Answered by Kiitan O. Maths tutor

3724 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If f(x)=x^2 and g(x)=5x-11, then what is fgg(x) when x=3?


Given y = x(3x+ 5)^3. Find dy/dx.


Differentiate the following: 3/2 x^(3/4) + 1/3 x^(-1/4)


Separate (9x^2 + 8x + 10)/(x^2 + 1)(x + 2) into partial fractions.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning