Explain why for any constant a, if y = a^x then dy/dx = a^x(ln(a))

So let's start with taking the natural log on both sides of y=ax, giving us ln(y) = ln(ax). Using the laws of logarithms we can write this as ln(y) = xln(a).Next, we differentiate both sides with respect to x, giving d/dx(ln(y)) = d/dx(xln(a)). As the term on the left hand side does not include any x terms we use the chain rule in order to differentiate with respect to y, dy/dx(d/dy(ln(y)) = d/dx(xln(a)) and then carry out the differentiation. We are then left with dy/dx(1/y) = ln(a), and, using some manipulation we find dy/dx = yln(a), and the original substitution leaves us with exactly what we're looking for y = ax(ln(a)).

JM
Answered by James M. Maths tutor

11774 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate with respect to x: y = xln[2x]


Prove cosec2A-cot2A=tanA


Find the coordinates of the minimum point of the curve y = 3x^(2) + 9x + 10


How would I sketch the graph sin(x) + sin(2x - π/2) in my exam?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning