Show that (sec(x))^2 /(sec(x)+1)(sec(x)-1) can be written as (cosec(x))^2.

( sec2(x))/((sec(x)+1)(sec(x)-1))Then, by the rule of 'difference of two squares', we know that this equals= (sec2(x))/(sec2(x)-1)= (sec2x/tan2x)since 1+tan2(x)=sec2(x), we get sec2(x)-1=tan2(x). By multiplying throughout by cos2(x), we get(sec2x/tan2x)=1/sin2(x)=cosec2(x)as required.

RS
Answered by Rishi S. Maths tutor

11228 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What's the point of writing my mathematics well if I don't get extra marks for it?


The function f is defined as f(x) = e^(x-4). Find the inverse of f and state its domain.


Derive the following with respect to x1: y=(x1*x2)/(x1+x2).


Find ∫ x^2(ln(4x))dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning