Show that (sec(x))^2 /(sec(x)+1)(sec(x)-1) can be written as (cosec(x))^2.

( sec2(x))/((sec(x)+1)(sec(x)-1))Then, by the rule of 'difference of two squares', we know that this equals= (sec2(x))/(sec2(x)-1)= (sec2x/tan2x)since 1+tan2(x)=sec2(x), we get sec2(x)-1=tan2(x). By multiplying throughout by cos2(x), we get(sec2x/tan2x)=1/sin2(x)=cosec2(x)as required.

RS
Answered by Rishi S. Maths tutor

11288 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove that, if 1 + 3x^2 + x^3 < (1+x)^3, then x>0


How would you differentiate f(x)=3x(2x-1)^2


How do you factorise quadratic, cubic functions or even quartic functions?


The points A and B have coordinates (2,4,1) and (3,2,-1) respectively. The point C is such that OC = 2OB, where O is the origin. Find the distance between A and C.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning