Show that (sec(x))^2 /(sec(x)+1)(sec(x)-1) can be written as (cosec(x))^2.

( sec2(x))/((sec(x)+1)(sec(x)-1))Then, by the rule of 'difference of two squares', we know that this equals= (sec2(x))/(sec2(x)-1)= (sec2x/tan2x)since 1+tan2(x)=sec2(x), we get sec2(x)-1=tan2(x). By multiplying throughout by cos2(x), we get(sec2x/tan2x)=1/sin2(x)=cosec2(x)as required.

RS
Answered by Rishi S. Maths tutor

11463 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate sin(x)cos(x)^2 from 0 to π/2


Differentiate 3x^2 + 4x - 7


How do I find the angle between a vector and a plane in cartesian form?


Find the exact gradient of the curve y=ln(1-cos2x) at the point with x-coordinate π/6


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning