Show that (sec(x))^2 /(sec(x)+1)(sec(x)-1) can be written as (cosec(x))^2.

( sec2(x))/((sec(x)+1)(sec(x)-1))Then, by the rule of 'difference of two squares', we know that this equals= (sec2(x))/(sec2(x)-1)= (sec2x/tan2x)since 1+tan2(x)=sec2(x), we get sec2(x)-1=tan2(x). By multiplying throughout by cos2(x), we get(sec2x/tan2x)=1/sin2(x)=cosec2(x)as required.

RS
Answered by Rishi S. Maths tutor

11524 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the normal to the curve y = x^2 at x = 5.


Differentiate y^3 + 3y^2 + 5


The graph above shows the line y = 3*x^2. Find the area beneath the graph from y = 0 to y = 5.


Find dy/dx when y = (3x - 1)^10


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning