The curve C is paramterised by the equations: x = 5t + 3 ; y = 2 / t ; t > 0 Find y in terms of x and hence find dy/dx

x = 5t + 3 -> x - 3 = 5t -> (x - 3) / 5 = t
y = 2 / t -> y = 2 / ((x - 3) / 5) -> y = 10 / (x - 3) dy/dx = d/dx (10 / (x - 3)) -> dy/dx= -10 (x - 3)-2

DC
Answered by Dylan C. Maths tutor

3478 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to integrate and differentiate ((3/x^2)+4x^5+3)


Express the following in partial fractions: (x^2+4x+10)/(x+3)(x+4)(x+5)


Differentiate f = ln(x^2 + 1) / (x ^ 2 + 1).


Find the Total Area between the curve x^3 -3x^2 +2x and the x-axis, when 0 ≤ x ≤ 2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences