Express 8/((root3) -1)) in the form a(root3) +b, where a and b are integers.

You would multiply both numerator and denominator by the expression (root3 +1)/(root3 +1). This expression is equal to 1 hence the original expression remains unchanged. The new expression is now (8(root3)+8)/(3-1). We simplify the numerator and denominator to 8((root3)+1)/2. Now we can divide by 2 so we get 4((root3)+1)/1 or 4((root3)+1). Finally we expand the expression to 4(root3)+4. So a=4 and b=4.

SK
Answered by Shubham K. Maths tutor

6518 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find the angle between two lines in three dimensional vector space given two points on line 1 and the vector equation of line 2


A curve C has the equation x^3 +x^2 -10x +8. Find the points at which C crosses the x axis.


Differentiate x^2 from first principles


How would I differentiate y = 3xy + 2x^2 + x^2y^2 ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences