Express 8/((root3) -1)) in the form a(root3) +b, where a and b are integers.

You would multiply both numerator and denominator by the expression (root3 +1)/(root3 +1). This expression is equal to 1 hence the original expression remains unchanged. The new expression is now (8(root3)+8)/(3-1). We simplify the numerator and denominator to 8((root3)+1)/2. Now we can divide by 2 so we get 4((root3)+1)/1 or 4((root3)+1). Finally we expand the expression to 4(root3)+4. So a=4 and b=4.

SK
Answered by Shubham K. Maths tutor

6416 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

June 2008 C1 Paper Differentiation Question


find dy/dx when y=x^3 + sin2x


The function f (x) is defined by f (x) = (1-x)/(1+x), x not equal to -1. Show that f(f (x)) = x. Hence write down f ^-1 (x).


Integrate the function f(x) = ax^2 + bx + c over the interval [0,1], where a, b and c are constants.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences