How do I find the roots of a quadratic equation?

A quadratic equation is one that contains an x^2 term that has a non 0 coefficient, There are three basic methods for solving a quadratic equation; factorising, completing the square, and the quadratic formula. These methods will all work with any equation, but each one is more suited to specific sets of examples. Factorising method is based on the FACTOR THEOREM, which states that the polynomial f(x) has a factor (x-k) if f(k) =0. (this is an specific example of the more general remainder theorem). x^2-3x-28 (work through this on the whiteboard) Completing the square, this method is best suited to examples in which the roots are non-integers and thus are not easily solved by factorisation. The method involved taking half the coefficient of x and using it to create (x-k)^2 + c and then finding c by comparison. e.g. 2x^2-20x+8 The quadratic formula: this can be used to solve any quadratic equation but it is computationally intense and thus should be avoided except in the most involved cases that can not be solved by alternative methods. (state quodratic formular on the board) e.g. -7x^2+2x+9 Two final things to remember about quadratic equations are that you should always attempt to use this simplest possible method to solve the question as this will save you time. Also, you can check your answer but substituting it back into the question.

MC
Answered by MacGregor C. Maths tutor

3923 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Consider a cone of vertical height H (in metres) and base radius R (in metres) which is full with water. The cone, at time t=0, starts to leak such that it loses water at a rate of k m^3 per second. Give an expression for the rate of change of H.


Find the turning points of the curve y = 3x^4 - 8x^3 -3


Express (3 - sqrt(5))^2 in the form m + n*sqrt(5), where m and n are integers.


How do I find the co-ordinates of a stationary point of a given line and determine whether it is a minimum or a maximum point?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning