How can I use the normal distribution table to find probabilities other than P(z<Z)?

The normal distribution tables show, for a given Z value, the probability that the random variable z takes a value less than Z or P(z<Z). This is also the area under the normal distribution curve up to Z. We'll call this area A. It is important to remember two things about the normal distribution curve: firstly that the total area under it is 1 and secondly that it is symmetrical.So if we were aiming to find P(z>Z) then we first note that this is the area under the curve from Z upwards. As the sum of the area below Z and above Z must be the total area we see that P(z<Z) + P(z>Z) = 1 and so P(z>Z) = 1-A.In dealing with negative values -Z we use the symmetry of the curve to see that the area below -Z must be equal to the area above Z, giving P(z<-Z) = P(z>Z) = 1-A from the above.Using these two facts we can find the solution to others such as P(z>-Z) or P(m<z<M).

HA
Answered by Holi A. Maths tutor

3536 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of sin^2(X)


I always mix up my integration and differentiation. How do i stop this?


I did all the past papers but I still only achieved a C grade, what am I doing wrong?


The straight line with equation y = 3x – 7 does not cross or touch the curve with equation y = 2px^2 – 6px + 4p, where p is a constant. Show that 4p^2 – 20p + 9 < 0.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences