What is product rule differentiation?

Product rule differentiation, is a form of differentiation which is used to calculate the derivative, i.e. the gradient of the function, of a function f(x) which is made up of one function g(x) multiplied by another function t(x). So given f(x)= g(x).t(x) we can calculate its derivative f'(x). First we calculate the individual derivatives t'(x) and g'(x) we then calculate the derivative of the function f(x) using the formula f'(x)=t'(x)g(x)+g'(x)t(x).For example given the function f(x)=x3sin(x) so t(x)=x3 , t'(x)=3x2 , g(x)=sin(x) g'(x)=cos(x) therefore f'(x)=3x2sin(x)+x3cos(x)

TF
Answered by Thomas F. Maths tutor

4547 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve C has equation y = (2 - x)(1 + x) + 3 . A line passes through the point (2, 3) and the point on C with x-coordinate 2 + h . Find the gradient of the line, giving your answer in its simplest form.


Differentiate y= exp(cos^2(x)+sin^2(x)) by using the chain rule.


Given that y = 4x^3 -1 + 2x^1/2 (where x>0) find dy/dx.


What is the chain rule?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning