(Q20 Non-Calculator paper, Higher Tier) Solve algebraically the simultaneous equations: x^2 + y^2 = 25 and y – 3x = 13

We have a quadratic equation (unknowns are raised to the power of 2) and a liner equation (power 1). We will use the linear equation to express one of the variables, e.g. y, in terms of the other, i.e. x. Then, we will substitute the obtained expression for y in the quadratic equation and solve for x, using the quadratic formula. Having found x, we will use its value to find y.Execute: From y - 3x = 13 => y = 13 + 3xFrom x2 + y2 = 25 => x2 + (13+3x)2= 25. Expanding the brackets we get: 10x2 + 78x + 144 = 0. Using the quadratic formula: x= {-b +/- sqrt (b2-4ac)}/(2a) we get: x = -3 and x = -4.8. Plugging those values in y = 13 + 3x, we get: y = 4 and y = -1.4 in this order. Answer: x = -3, y = 4 & x = -4.8, y = -1.4. Note: lack of formatting options make the formulae look much more complicated than they are. Using whiteboard will resolve this issue.

DS
Answered by Darena S. Maths tutor

4398 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Refer to question taken from Edexcel Maths Paper


How do you break down a wordy question (e.g. Aled has three concrete slabs. Two slabs square, of length x, & the third rectangular of dimensions 1m & x+1m. Show 2x^2 +x-6=0 & Solve this)


Prove that the composite function fg(2)=-26 where f(x)=3x+1 and g(x)=1-5x


Solve for x and y: x ^2 +2y = 9,y = x + 3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences