Draw the electric field lines produced by a negative point charge and calculate the electric field strength at a distance of 50mm from a point charge of size -30nC.

The diagram should show a negative point charge with the electric field lines pointing towards the point charge. The separation of the lines should decrease as you get closer to the point charge. The lines should be straight and perpendicular to the equipotential lines which circle the point charge.

In order to calculate the electric field strength, the equation for the force on a charge due to Coulomb's law and the equation for the electric field strength must be combined to give an equation for the electric field strength in terms of the size of the point charge;
F = Q1 Q2 / 4πε0 r2
E = F / Q1
E = Q2 / 4πε0 r2

Q2 should be recognised as the size of the point charge and this should be changed should be changed into Coulombs (nC = 1 x 10-9 C).
r should be recognised as the distance from the point charge and this should be changed into metres (mm = 1 x 10-3 m).
These numbers and the constants should be substituted into the final equation to give an electric field strength of -1.08 x 105 C (3 significant figures).

JB
Answered by Jemima B. Physics tutor

3210 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Describe energy transformations in a oscillating pendulum, which undergoes simple harmonic motion. How this implies the velocity at critical (lowest and highest) points?


An ideal gas at a temperature of 22 C is trapped in a metal cylinder of volume 0.2 m^3 at a pressure of 1.6x10^6 Pa. The gas has a molar mass of 4.3 x 10^(-2) kg mol^(-1). Calculate the density of the gas in the cylinder.


Two people sit opposite each other on the edge of a rotating disk of radius, R, and negligible mass. One person has a mass of 40kg, the other of 50kg. The disk is rotating at 30 revs/min. What is the rotational kinetic energy if R=1.5m?


What is the definition of a moment?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning