Draw the electric field lines produced by a negative point charge and calculate the electric field strength at a distance of 50mm from a point charge of size -30nC.

The diagram should show a negative point charge with the electric field lines pointing towards the point charge. The separation of the lines should decrease as you get closer to the point charge. The lines should be straight and perpendicular to the equipotential lines which circle the point charge.

In order to calculate the electric field strength, the equation for the force on a charge due to Coulomb's law and the equation for the electric field strength must be combined to give an equation for the electric field strength in terms of the size of the point charge;
F = Q1 Q2 / 4πε0 r2
E = F / Q1
E = Q2 / 4πε0 r2

Q2 should be recognised as the size of the point charge and this should be changed should be changed into Coulombs (nC = 1 x 10-9 C).
r should be recognised as the distance from the point charge and this should be changed into metres (mm = 1 x 10-3 m).
These numbers and the constants should be substituted into the final equation to give an electric field strength of -1.08 x 105 C (3 significant figures).

JB
Answered by Jemima B. Physics tutor

3091 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Describe one technique you could use to measure the threshold voltage for LEDs.


Two electrons are a distance r apart, the first electron exerts a force F on the second electron. a) What force does the second electron exert on the first? b) In terms of r, at what distance is the force that the first electron exerts on the second F/9?


A ball with radius 10cm is filled with an ideal gas at pressure 2*(10)^5Pa and temperature 300K. The volume of the gas is changed at constant pressure so that the radius of the ball is reduced with 1cm. Find the amount of gas and the new temperature


How do stars form?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning