Locate the position and the nature of any turning points in the function: 2x^3 - 9x^2 +12x

I would first ask the student to draw a cubic graph(preferably the function in asking depending on the student's capability). I would then ask the student to show me where the stationary points in the graphs are. All this will aid in the student's understanding of the underlying concepts of the first and second derivatives. If the student struggles at any point, I will give the student an opportunity to think before giving hints.
The first derivative is worked out: dy/dx= 6x2 -18x+12. This is set to equal zero in order to find the stationary points. This can be done by factorising and finding the x values where the equation equal to zero: dy/dx=(6x-12 )(x-1). This leads to the values x =2 and x=1. After differentiating again to get the second derivative: d2y/dx2 = 12x -18. When x = 2, d2y/dx2 = 6, when x = 1, d2y/dx2 = -6. A negative second derivative indicates a maxima and a positive value indicates a minima. After substitution into the original function to find the corresponding y-values:x = 2, y = 4, Minimax = 1, y = 5, Maxima

EI
Answered by Ewa I. Maths tutor

6555 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation 3sin^2(x) + sin(x) + 8 = 9cos^2(x), -180<X<180. Then find smallest positive solution of 3sin^2(2O-30) + sin(2O-30) + 8 = 9cos^2(2O-30).


What are the parameters of the Poisson distribution?


Find the turning point of the function y=f(x)=x^2+4x+4 and state wether it is a minimum or maximum value.


A rollercoaster stops at a point with GPE of 10kJ and then travels down a frictionless slope reaching a speed of 10 m/s at ground level. After this, what length of horizontal track (friction coefficient = 0.5) is needed to bring the rollercoaster to rest?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning