Find the inverse of a 2x2 matrix

Consider the 2x2 matrix M, consisting of elements a, b, c and d. To find its inverse one must first find the determinant of M. This is achieved by calculating the result of the expression ad - bc. The inverse of M is subsequently found by multiplying the reciprocal of the determinant (1/ad - bc) by a rearrangement of the original matrix such that the positions of a and d are swapped and b and c are multiplied by -1. For the inverse to exist the determinant of M must be non-zero, since the reciprocal of zero is infinite. This suggests that for some matrices there exists no inverse and so these and referred to as singular.

GD
Answered by Giovanni D. Maths tutor

3860 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integration by parts: x^-2lnx


How do you integrate by parts?


How do you prove the 1^2 +2^2+.....+n^2 = n/6 (n+1) (2n+1) by induction?


Prove by contradiction that there is an infinite number of prime numbers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning