Differentiate y=ln(ln(x)) with respect to x.

To solve this question we need to understand the process of implicit differentiation, which is a case of using the chain rule. If you remember the chain rule states that for y=f(g(x)), we have y'=f'(g(x))g'(x), so that we treat y as being composed of two functions and differentiate them individually, then multiply. So instead if we have f(y)=g(x), then using the same rule on the left hand side but with y, and differentiating both sides we get y'f'(y)=g'(x). Now that this is understood we can solve the question. We are given y=ln(ln(x)) so ey = ln(x). Now differentiate this on both sides: y'ey=1/x. Now we're looking for y' on one side and everything else on the other:y'=1/(xey). We're almost there but there's a problem, we want y' with respect to x so we need the right hand side only with x: fortunately we know ey=lnx, so y'=1/(xln(x)). And we are done. Can you differentiate y = ln(ln(x2)) for me?

MK
Answered by Marek K. Maths tutor

4719 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

In what useful ways can you rearrange a quadratic equation?


The curve C has the equation: 2(x^2)y + 2x + 4y – cos (πy) = 17 use implicit differentiation to find dy/dx in terms of x and y


Given y = 9x + 1/x, find the values of x such that dy/dx=0


How to differentiate y=(x^2+4x)^5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences