Solve the simultaneous equation: 3x+y=24, x-7-y=-3

Simultaneous equations can be solved either using substitution or elimination.
For this example we will use substitution to work out the answer, which will involve rearranging one of the equations (in this case the second equation is it is simpler) into a way that it can be inserted (or substituted) into the first equation.
Rearrange x-7-y=-3 into x-4=ySubstitute x-4=y into the first equation to make 3x+ (x-4) = 24Simplify this new equation into 4x -4 = 24 which simplifies into 4x=28 which means that x = 7
Substitute x=7 into the either of the equation (preferably the simpler equation) and simplify to find y(7) - 7 - y= -3 -y = -3y = 3
Answer y=3, x=7

NG
Answered by Nicholas G. Maths tutor

4697 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Talil is going to make some concrete mix. He needs to mix cement, sand and gravel (1: 3:5) by weight. Talil wants to make 180 kg of concrete mix. He has 15 kg of cement, 85 kg of sand, 100 kg of gravel. Does he have enough to make the concrete?


What is Pythagoras' Theorem and how is it used in exam questions?


Work out the points of intersection of the graphs of y= (x+2)(x-4) and y=3x+6.


Write 120 as a product of its prime factor


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning