How do I find the stationary points of a curve?

For a curve where y = f(x) the gradient of the curve is the derivative of this equation dy/dx. Stationary points of a curve occur when the gradient of the curve is zero. Hence find the expression for dy/dx and solve the equation:
dy/dx = 0
Once the x values which satisfy this equation are found the corresponding y values for each x value can be found by subbing the x values into the equation of the curve. You now have the full set of coordinates for the stationary points of the curve.
A possible extension would be to explain how the nature of the stationary points are found.

AM
Answered by Anna M. Maths tutor

3790 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If z is a complex number, solve the equation (z+i)* = 2iz+1 where the star (*) denotes the complex conjugate.


find dy/dx of the equation y=ln(x)2x^2


A circle has the equation x^2 + y^2 - 4x + 10y - 115 = 0. Express the equation in the form (x - a)^2 + (y - b)^2 = k, and find the centre and radius of the circle.


Given that y= x^(-3/2) + (1/2)x^4 + 2, Find: (a) the integral of y (b) the second differential of y


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning