How do I find the stationary points of a curve?

For a curve where y = f(x) the gradient of the curve is the derivative of this equation dy/dx. Stationary points of a curve occur when the gradient of the curve is zero. Hence find the expression for dy/dx and solve the equation:
dy/dx = 0
Once the x values which satisfy this equation are found the corresponding y values for each x value can be found by subbing the x values into the equation of the curve. You now have the full set of coordinates for the stationary points of the curve.
A possible extension would be to explain how the nature of the stationary points are found.

AM
Answered by Anna M. Maths tutor

3752 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate: f(x)=2(sin(2x))^2 with respect to x, and evaluate as a single trigonometric function.


For sketching the graph of the modulus of f(x) (in graph transformations), why do we reflect in the x-axis anything that is below it?


Find the area under the curve y=xexp(-x)


How would you differentiate f(x) = 2x(3x - 1)^2 using the chain rule?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning