How do I find the stationary points of a curve?

For a curve where y = f(x) the gradient of the curve is the derivative of this equation dy/dx. Stationary points of a curve occur when the gradient of the curve is zero. Hence find the expression for dy/dx and solve the equation:
dy/dx = 0
Once the x values which satisfy this equation are found the corresponding y values for each x value can be found by subbing the x values into the equation of the curve. You now have the full set of coordinates for the stationary points of the curve.
A possible extension would be to explain how the nature of the stationary points are found.

AM
Answered by Anna M. Maths tutor

3516 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Curve C has equation y=(9+11x)/(3-x-2x^2). Find the area of the curve between the interval (0, 1/2). State your answer in exact terms.


Integrate e^x sinx


1)Simplify sqrt 98 - sqrt 32, givimg your answer in the form k sqrt 2 where k is an integer.


What is the gradient of the function f(x) = 2x^2 + 3x - 7 at the point where x = -2?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning