A curve has equation y=2x^3. Find dy/dx.

We differentiate here to find the gradient, dy/dx, i.e. the differenitial of y in terms of x. As the right handside is purely dependant on x, this is simple. We can just multiply through by the power, i.e. 2x3=6, then negate the power by one, 3-1=2. Therefore giving us dy/dx = 6x^2.

CT
Answered by Claire T. Maths tutor

4572 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the area bound by the x-axis, the lines x=1 and x=3 and the curve y=3x^(2)-1/x ? Answer in exact form.


How do one tailed and two tailed hypothesis tests differ


How to differentiate x^2 + y^2 - 2x + 6y = 5


A curve is defined by the parametric equations x=t^2/2 +1 and y=4/t -1. Find the gradient of the curve at t=2 and an equation for the curve in terms of just x and y.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning