A curve C has equation 2^x + y^2 = 2xy. How do I find dy/dx for the curve C?

This question requires an understanding of implicit differentiation, a specific form of the chain rule for derivatives.
(Aside/reminder) - Implicit function vs Explicit function: Explicit functions: y may be written solely as a function of x. Of the form: y = f(x)e.g. y = 2x + 3Implicit functions:y cannot be solely written as a function of x.Of the form: F(x, y) = 0e.g. ey + 2xy = 0
Question:1) We differentiate each component of the function with respect to the variables present, using the chain rule, product rule, and other known algebraic rules where necessary.2) For the first component, let z = 2x . Take the natural logarithm of both sides. We know form logarithmic rules ln(2x) = xln(2), hence ln(z) = xln(2). Differentiating both sides implicitly using the chain rule we get, dz/dx(1/z) = ln(2). Hence dz/dx = zln(2) = 2xln(2). This is the derivative of the first component.3) For the second component, let u = y2. We know from the chain-rule, du/dx = dy/dx * du/dy. Hence, du/dx = dy/dx * (2y). This is the derivative of the second component.4) For the third component, let w = 2xy. We use the product rule: dw/dx = 2x*(dy/dx * 1) + 2*(y) = dy/dx (2x) + 2y. This is the derivative of the third component.5) Overall the equation differentiates to: 2xln(2) + dy/dx(2y) = dy/dx*(2x) +2y. This can be rearranged to form dy/dx = [2y - 2xln(2)]/[2(y-x)].

JC
Answered by Jesse C. Maths tutor

12114 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Proof by Induction - "What's the point if we already know the answer?"


A particle of mass m is placed on an slope with an incline 30 degrees. Once released it accelerates down the line of greatest slope at 2 m s^-2. What is the coefficient of friction between the particle and the slope?


Solving Quadratic Equations


When do you use Mode, Mean and Median


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning